

Team 66

Waste Detection using Faster RCNN and Mask R-CNN

Vignesh Muthukumar

Sunidhi Hegde

Divya Giridhar

Motivation

- Only 30%* of recyclable materials actually get recycled.
- Automated system needed to improve efficiency and create a sustainable process to manage waste.
- Instance segmentation is challenging as it requires the correct detection of all objects in an image while also precisely segmenting each instance.
- We aim to mitigate this issue by developing a model that automatically detects different types of waste products into predefined classes.

* source - Recycling rate of municipal solid waste in the United States 1960-2018. Published by Ian Tiseo, Mar 30, 2022

Task

- Implement Faster R-CNN model.
- Implement Mask R-CNN for image segmentation to detect the type of waste.
- Measured using **Region of Interest** (Rol).

* source - Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick, 'Mask R-CNN' https://arxiv.org/pdf/1703.06870.pdf

H x W=957x1300

e-waste

Dataset

- The primary dataset used to train the model is inspired from the resources curated by Jay et.al ^{*[1]}.
- The data for other classes like Medical waste was scraped from Google Images using the Simple Image Downloader library ^{*[2]}.
- The images are broadly classified into 6 classes such as Metal, Glass, Paper, Organic, E-Waste and Medical.
- We have: **856** examples, **685** are training and **171** testing. (80-20 split)

* sources - [1] https://drive.google.com/drive/folders/1CTvTgnTvwlcKwJ8yz4jUOs0JYTKrplA

- [2] https://libraries.io/pypi/simple-image-download

Sample Images

Medical

Metal

Paper

Organic

E-waste

Annotations

H x W=384x512

H x W=384x512

H x W=384x512

H x W=384x512

glass

glass

glass

Methodology - Faster RCNN

- Faster R-CNN consists of two stages:
 - 1. Region Proposal Network (RPN)
 - 2. Fast R-CNN
- During training^{*[1]}, the model expects input tensors and targets containing:
 boxes (FloatTensor[N, 4]): the ground-truth boxes in [x1, y1, x2, y2] format, with 0 <= x1 < x2 <= W and 0 <= y1 < y2 <= H
 - labels (Int64Tensor[N]): the class label for each ground-truth box
- The model returns a Dict[Tensor] during training, containing the classification and regression losses for both the RPN and the R-CNN.

* sources - [1] <u>https://pytorch.org/vision/stable/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn.html</u>

Baseline Performance

NC STATE	
UNIVERSITY	

IoU metri	lc: bbox									
Average	Precision	(AP)	6[IoU=0.50:0.95	area=	all	maxDets=100]	=	0.00
Average	Precision	(AP)	6[IoU=0.50	area=	all	maxDets=100]	=	0.03
Average	Precision	(AP)	@[IoU=0.75	area=	all	maxDets=100]	=	0.0
Average	Precision	(AP)	6[IoU=0.50:0.95	area=	small	maxDets=100]	=	-1.0
Average	Precision	(AP)	6[IoU=0.50:0.95	area=1	nedium	maxDets=100]	=	-1.0
Average	Precision	(AP)	6[IoU=0.50:0.95	area=	large	maxDets=100]	=	0.0
Average	Recall	(AR)	@[IoU=0.50:0.95	area=	all	maxDets= 1]	=	0.00
Average	Recall	(AR)	@[IoU=0.50:0.95	area=	all	maxDets= 10]	=	0.00
Average	Recall	(AR)	@[IoU=0.50:0.95	area=	all	maxDets=100]	=	0.00
Average	Recall	(AR)	@[IoU=0.50:0.95	area=	small	maxDets=100]	=	-1.(
Average	Recall	(AR)	@[IoU=0.50:0.95	area=n	nedium	maxDets=100]	=	-1.0
Average	Recall	(AR)	@[IoU=0.50:0.95	area=	large	maxDets=100]	=	0.0

001 010 000 .000 .000 001 002 009 .000 .000 .000

Methodology - Mask RCNN

- **Extends Faster R-CNN** by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition Mask R-CNN is simple to train on Faster R-CNN, running at 5 fps.
- Two level architecture
 - Convolutional **backbone** architecture used for feature extraction over an entire image.
 - The network head for bounding-box recognition (classification and regression) and mask prediction that is applied separately to each Rol.
- A multi-task loss on each sampled Rol is defined as $L = L_{cls} + L_{box} + L_{mask}$.
- L_{mask} is defined only on positive Rols.


```
* sources - [1] arXiv:1703.06870 [cs.CV]
```

NC STATE UNIVERSITY

Proposed Model: Mask R-CNN

def detect(self, images, verbose=0):

```
assert self.mode == "inference", "Create model in inference mode."
assert len(
    images) == self.config.BATCH_SIZE, "len(images) must be equal to BATCH_SIZE"
```

if verbose:

log("Processing {} images".format(len(images)))
for image in images:

log("image", image)

Mold inputs to format expected by the neural network
molded_images, image_metas, windows = self.mold_inputs(images)

Validate image size

All images in a batch MUST be of the same size

image_shape = molded_images[0].shape
for g in molded_images[1:]:

assert g.shape == image_shape,\

"After resizing, all images must have the same size. Check IMAGE_RESIZE_MODE and image sizes."

Anchors

```
anchors = self.get_anchors(image_shape)
# TODO: can this be optimized to avoid duplicating the anchors?
anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape)
if verbose:
    log("molded_images", molded_images)
    log("image_metas", image_metas)
    log("anchors", anchors)
# Run object detection
detections, _, _, mrcnn_mask, _, _, =\
    self.keras_model.predict([molded_images, image_metas, anchors], verbose=0)
# Process detections
results = []
for i, image in enumerate(images):
    final_rois, final_class_ids, final_scores, final_masks =\
        self.unmold_detections(detections[i], mrcnn_mask[i],
                                 image.shape, molded_images[i].shape,
                                windows[i])
    results.append({
        "rois": final_rois,
        "class_ids": final_class_ids,
        "scores": final_scores,
        "masks": final masks,
    })
return results
```


Predictions

Class Detection

