NC STATE
UNIVERSITY

Team 66

Waste Detection using Faster RCNN and
Mask R-CNN

Vignesh Muthukumar Sunidhi Hegde Divya Giridhar

Motivation

Only 30%* of recyclable materials actually get recycled.

Automated system needed to improve efficiency and create a sustainable process to
manage waste.

Instance segmentation is challenging as it requires the correct detection of all objects
iIn an image while also precisely segmenting each instance.

We aim to mitigate this issue by developing a model that automatically detects different

types of waste products into predefined classes.

* source - Recycling rate of municipal solid waste in the United States 1960-2018. Published by lan Tiseo, Mar 30, 2022

https://www.statista.com/aboutus/our-research-commitment

Task

e Implement Faster R-CNN model.
e Implement Mask R-CNN for image segmentation to detect the type of waste.

e Measured using Region of Interest (Rol).

Mask RCNN

e-waste

R . (1 ‘]T‘fr—-¢ L ' E
‘ CNN —_ : Feature e Regressor B
/4 Feature Map . Box |

: Fully connected layer
images

* source - Kaiming He, Georgia Gkioxari, Piotr Dollar, Ross Girshick, ‘Mask R-CNN’ https://arxiv.org/pdf/1703.06870.pdf

Dataset

The primary dataset used to train the model is inspired from the resources
curated by Jay et.al .

The data for other classes like Medical waste was scraped from Google
Images using the Simple Image Downloader library 2.

The images are broadly classified into 6 classes such as Metal, Glass,
Paper, Organic, E-Waste and Medical.

We have: 856 examples, 685 are training and 171 testing. (80-20 split)

* sources - [1] https://drive.google.com/drive/folders/1CTvTgnTvwlicKwJ8yz4jUOs0JYTKrplA
- [2] https://libraries.io/pypi/simple-image-download

https://drive.google.com/drive/folders/1CTvTgnTvwlcKwJ8yz4jUOs0JYTKrplA
https://libraries.io/pypi/simple-image-download

NC STATE

Sample Images

E-waste

Annotations

e The six classes were annotated for the actual masked segments to be found

H X \f¢=384x512 H x W=853x1280 medical

— H x W=384x512
B
.d- __—4

H x W=384x512 H x W=300x300 medical
Hx W=384x512

N /

H x W=384x512

Hx W=384x512

Hx W=413x820 medical
e
YR

Methodology - Faster RCNN

e Faster R-CNN consists of two stages:
1. Region Proposal Network (RPN)
2. Fast R-CNN

e During training™, the model expects input tensors and targets containing:
o boxes (FloatTensor[N, 4]): the ground-truth boxes in [x1, y1, X2, y2] format,
with O <=x1<x2<=Wand0<=y1<y2<=H
o labels (Int64Tensor[N]): the class label for each ground-truth box

e The model returns a Dict[Tensor] during training, containing the classification and
regression losses for both the RPN and the R-CNN.

* sources - [1] https://pytorch.org/vision/stable/generated/torchvision.models.detection.fasterrcnn_resnet50 fpn.html

https://pytorch.org/vision/stable/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn.html

NC STATE
UNIVERSITY

IoU metric: bbox

Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average

Precision
Precision
Precision
Precision
Precision
Precision
Recall
Recall
Recall
Recall
Recall

Baseline Performance

e e e) L L J o @ E3) L L 3 L L J
O O O O O O O O O
L J L 3 o L] L] L] L] L]

area= all
area= all
area= all
area= small
area=medium
area= large
area= all
area= all
area= all
area= small
area=medium
area= large

maxDets=100
maxDets=100
maxDets=100
maxDets=100
maxDets=100
maxDets=100
maxDets= 1
maxDets= 10
maxDets=100
maxDets=100
maxDets=100
maxDets=100

Methodology - Mask RCNN

Extends Faster R-CNN by adding a branch for predicting an object mask in
parallel with the existing branch for bounding box recognition
Mask R-CNN is simple to train on Faster R-CNN, running at 5 fps.

Two level architecture

o Convolutional backbone architecture used for feature extraction over an
entire image.

o The network head for bounding-box recognition (classification and regression)
and mask prediction that is applied separately to each Rol.

A multi-task loss on each sampled Rol is definedas L=L__+L

box

L Is defined only on positive Rols. TR
mask clas

2 8] __

. 14x14 ‘ X141 28x28 28x28
* sources -[1] arXiv:1703.06870 [cs.CV] ' X256 | @
mask

i Proposed Model: Mask R-CNN

def detect(self, images, verbose=0):

self.mode "inference", "Create model in inference mode."

—
",

len(: ’ , 4/
images) self.config.BATCH_SIZE, "len(images) must be equal to BATCH_SIZE" g e % "
e-waste

verbose:
log("Processing {} images".format(len(images)))
image images:
log("image", image)

molded_images, image_metas, windows = self.mold_inputs(images)

image_shape - molded_images[0].shape
g molded_images[1:]:
g.shape image_shape, \
"After resizing, all images must have the same size. Check IMAGE_RESIZE MODE and image sizes."

anchors = self.get_anchors(image_shape)

anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape)

verbose:
log("molded_images", molded_images)
log("image_metas", image_metas)
log("anchors", anchors)

detections, , , mrcnn_mask, , , _ =\ / ‘ e
self.keras_model.predict([molded_images, image_metas, anchors], verbose-0) ". ’

results = []

, . ejwaste 0.976
i, image enumerate(images): .
final_rois, final_class_ids, final_scores, final_masks =\ \ -
self.unmold_detections(detections[il, mrcnn_maskl[il], \ ‘ “ 4}" ‘
image.shape, molded_images[il.shape, }WSW ®983-te 0 9IS :
windows [i]) R . e-waste 0.999 '
results.append({ ' ’
"rois": final_rois,
"class_ids": final_class_ids,
"scores": final_scores,
"masks": final_masks,

})

results

Predictions

Input Image Class Detection

-
1
1
]
1
1
1
1
]
1
1
1
1
]
1
1
1
1
]
1
1
1

U

THANK YOU

